0%

Linear Algebra Done Right Chapter 1.B#2

Chapter 1.B Definition of Vector Space 向量空间的定义

这一节主要讨论的是向量空间及其相关性质的定义。

1.18 Definition addition, scalar multiplication 加法,数乘的定义

  • An addition on set V is a function that assigns an element u+v V to each pair of elements u,v V .
  • A scalar multiplication on a set V is a function that assigns an elements λv V to each λ F and each v V .

要定义向量空间,我们自然想到在之前对Fⁿ中加法和数乘的定义,这里我们同样可以这样做,在这里对集合V中的加法和数乘进行定义之后就可以正式的定义向量空间了。

1.19 Definition vector space 向量空间的定义

A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

commutativity

u+v = v+u for all u,v V

associativity
(u+v)+w = u+(v+w) and (ab)v = a(bv) for all u,v,w V and all a,b F

additive identities
there exists an element 0 ∈ V such that v+0 = v for all v V ;

additive inverse
for every v V , there exists w V such that u+v = 0;

multiplicative identity
1v = v for all v V ;

distributive property
a(u+v) = au+av and (a+b)v = av+bv for all a,b F and all u,v V ;

这里的定义与上一节对复数运算的定义很相似,类比理解即可,只需注意这里V中的元素是向量。

1.20 Definition vector,point 向量,点的定义

Elements of a vector space are called vectors or points .

至此,我们可以说V是在F上的一个向量空间,因为V中的数乘是依赖F中的性质的,同理我们可以说Rⁿ和Cⁿ都是在R和C上的向量空间。

1.21 Definition real vector space, complex vector space 实数向量空间,复数向量空间的定义

  • A vector space over R is called a real vector space .
  • A vector space over C is called a complex vector space .

eg1.22

1.23 Notation 符号Fˢ

  • If S is a set, then denotes the set of functions from S to F.
  • For f,g, the sum f+g is the function defined by
    (f+g)(x) = f(x)+g(x)

    for all x S .
  • For λ F and f, the product λf is the function defined by
    (λf)(x) = λf(x)

    for all x S .

这里有点抽象的是Fˢ中的元素是向量也是函数,因为S中的元素是自变量x。这里定义了Fˢ后又定义了Fˢ中的加法和数乘。书上举了一个例子,如果S是间隔[0,1]且F=R,那么R[0,1]就是在间隔[0,1]上所有实值函数的集合,eg1.24。

接下来是引出向量空间一些基本的性质。

1.25 Unique additive identity 唯一加法元

A vector space has a unique additive identity.

1.26 Unique additive inverse 唯一加法逆元

Every element in a vector space has a unique additive inverse.

这两条性质的证明只需用之前定义向量空间的一些性质即可证明。

1.27 Notation -v, w-v 符号-v, w-v

Let v, w V . Then

  • -v denotes the additive inverse of v;
  • w-v is defined to be w+(-v).

1.28 Notation V 符号V

For the rest of the book, V denotes a vector space over F.

1.29 The number 0 times a vector 数字0乘以一个向量

0v = 0 for every v V .

这里等号左边的0是标量,后边的0是向量,证明只需零0v=(0+0)v=0v+0v然后左右同时加上加法逆元即可。

1.30 A number times the vector 0 一个数字乘以一个向量0

a0 = 0 for every aF.

1.31 The number -1 times a vector 数字-1乘以一个向量

(-1)v = -v for every v V

1.30,1.31和1.29同理。