0%

Linear Algebra Done Right Chapter 1.A#1

Chapter 1.A Rⁿ and Cⁿ

本节主要定义了复数的概念和一些运算性质,以及列表list和 F Fⁿ 等概念。

Complex Numbers 复数

1.1 Definition complex numbers 复数的定义

  • A complex number is an ordered pair (a,b), where a,b R , but we will write this as a+bi.
  • The set of all complex numbers is denoted by C :
    C = {a+bi:a,b R }
  • Addition and multiplication on C are defined by
    (a+bi)+(c+di) = (a+c)+(b+d)i,
    (a+bi)(c+di) = (ac-bd)+(ad+bc)i;

    here a,b,c,d R .

eg1.2

1.3 Properties of complex arithmetic 复数运算的一些性质

commutativity

α+β = β+α and αβ = βα for all α,β C;

associativity
(α+β)+λ = α+(β+λ) and (αβ)λ = α(βλ) for all α,β,λ C;

identities
λ + 0 = λ and λ1 = λ for all λ C;

additive inverse
for every α C , there exists a unique β C such that α+β = 0;

multiplicative inverse
for every α C with α ≠ 0, there exists a unique β C such that αβ = 1;

distributive property
λ(α+β) = λα+λβ for all λ,α,β C.

这里的一些性质和实数的性质非常相似,想要证明可以用实数的一些性质和之前对复数的定义来证明,eg1.4。

Definition ,subtraction,1/α,division 加法逆元,减法,乘法逆元1/α,除法的定义

Let α,β C .

  • Let denote the additive inverse of α. Thus is the unique complex number such that
    α+(-α) = 0.
  • Subtraction on C is defined by
    β-α = β+(-α).
  • For α ≠ 0, let 1/α denote the multiplicative inverse of α. Thus 1/α is the unique complex number such that
    α(1/α) = 1.
  • Division on C is defined by
    β/α = β(1/α).

此处同上。

1.6 Notation F 符号F

Throughout this book, F stands for either R or C.

值得注意的是,这里F中的每个元素都是标量,与之相对的是向量,书上还定义了a次方,但这里就不赘述了,eg1,7。

Lists 列表

1.8 Definition list,length 列表和长度的定义

Suppose n is a nonnegative integer. A list of length n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like that:

(x₁,...,xₙ).

Two lists are equal if and only if they have the same length and the same elements in the same order.

这里要强调的有两点,一是列表中的元素都是非负整数,二是列表是有长度的。列表和集合的不同之处在于前者内部的元素顺序和重复是有意义的,而后者没有,ex1.9。

Fⁿ

Definition Fⁿ Fⁿ的定义

Fⁿ is the set of all lists of length n of elements of F:

Fⁿ = {(x₁,...,xₙ):xⱼF for j = }.

For (x₁,...,xₙ) ∈ Fⁿ and j ∈ {1,...,n}, we say that xⱼ is the jᵗʰ coordinate of (x₁,...,xₙ).

eg1.11

1.12 Definition addition in Fⁿ Fⁿ中加法的定义

Addition in Fⁿ is defined by adding corresponding coordinates:

(x₁,...,xₙ)+(y₁,...,yₙ) = (x₁+y₁,...,xₙ+yₙ)

1.13 Commutativity of addition in Fⁿ Fⁿ中加法交换律的定义

If x,yFⁿ, then x+y = y+x.

此处证明用上面定义与F中的交换律即可。

1.14 Definition 0 0的定义

Let 0 denote the list of length n whose coordinates are all 0:

0 = (0,...,0).

这里用0来定义确定长度中所有元素为0的列表,要区分式子中的0是数字还是列表主要看其他项是属于什么域,eg1.15。

1.16 Definition additive inverse in Fⁿ Fⁿ中加法逆元的定义

For xFⁿ, the additive inverse of x, denoted -x, is the vector -xFⁿ such that

x+(-x) = 0.

In other words, if x = (x₁,...,xₙ), then -x = (-x₁,...,-xₙ).

1.17 Definition scalar multiplication in Fⁿ Fⁿ中数乘的定义

The product of a number λ and a vector in Fⁿ is computed by multiplying each coordinate of the vector by λ:

λ(x₁,...,xₙ) = (λx₁,...,λxₙ);

here λF and (x₁,...,xₙ) ∈ Fⁿ.

这里我们定义了Fⁿ中加法和数乘的计算,这样让我们便于后面的计算,至于向量和向量的乘法并不能简单的照搬F中的定义,所以这里暂按不表。